Risk estimation and stratified screening: Is this the way forward?

Predicting Risk Of Cancer At Screening

D Gareth Evans
Potential risk factors* & factors to be investigated* for inclusion in a model

Breast cancer risk in general population

- Targeted screening and prevention based on risk
 - BRCA1/2
 - TP53
 - Polygenes
- Single Low risk
 - No genetic predisposition
 - MRI screening
 - Risk reducing Surgery*
- Lifetime risk of breast cancer

*optional
Family History & Genetics

- Number of affected family members, and age of developing breast cancer.
- BRCA1 & BRCA2 gene mutations
- Genetic variants – currently >100 known genetic variants that can increase the risk of breast cancer by between 5-30%
Proportion of familial breast cancer 2016

- BRCA1: 42%
- BRCA2: 9%
- TP53/STK11/CDH1/PTEN: 11%
- CHEK2/ATM: 1%
- GWAS SNPs: 5%
- BRIP/PALB: 1%
- Other: 31%
Breast Density

- Increased breast density increases risk of breast cancer.
- After family history and age this is the largest risk factor.
- Breast density is assessed from mammograms.
- There are a number of different methods for assessing breast density, but these methods need validating.
Mammographic Density

Dense breast

Lifet ime risk
25%

Non dense breast

Lifet ime risk
4%
Aims of the PROCAS study

- To determine whether it is feasible to incorporate personal breast cancer risk prediction into NHS BSP
- Alter mammographic screening interval based on each woman’s personal risk of cancer
- Introduce preventive measures for women who are high risk
PROCAS Summary

- 60,000 women, who attend NHS BSP in Greater Manchester will take part.

- Information on lifestyle and family history will be collected from a study questionnaire.

- Breast density assessments will be carried out.

- 10,000 of the 60,000 women will have genetic testing.

- This information will be incorporated to predict each woman’s individual breast cancer risk
Breast Density

- Breast density results will be obtained from 2 mammograms (Y1 and Y3) for each woman.

- We will use a number of breast density assessment methods and determine which is best for use within NHS BSP.
PROCAS Study Questionnaire

Collects information on:

- Family history
- Age at menarche
- Parity
- Age at first full term pregnancy
- Age menopause
- HRT use
- BMI
- Alcohol intake
- Exercise
DNA testing

- Carried out at Withington Community Hospital
- Participants provided with a saliva sample collection kit
- Collect sample (approx 5 min) seal and post to laboratory
- Laboratory extract DNA
- St Mary’s Hospital, Manchester carry out analysis to look for genetic variants
DNA testing

- 10,000 participants will be invited to have DNA testing
- Laboratory extract DNA
- St Mary’s Hospital, Manchester
- carry out analysis to look for
- genetic variants
- 10,000 recruited
Invitation letter sent

Consent taken & questionnaire completed

Mammogram 1 performed

OPTIONAL - DNA sample collected (10,000/60,000)

Initial risk calculation (Tyrer-Cuzick)

High risk & selection of low risk women informed of risk (if opted to receive risk information)

Mammogram 2 performed

Breast density results, questionnaire results & DNA results (if applicable) combined to give re-adjusted risk score
Recruitment

Number recruited 01/03/2015 – 57,432

- Uptake year 1: 35%
- Uptake year 2: 43%
- Uptake year 3: 37%
- Uptake year 4: 47%

- Year 2 uptake amongst first attendees aged 47-52: 52%

- Uptake when study staff present 60%
PRediction Of Cancer At Screening (PROCAS)

Distribution of VAS density scores

Number of participants

0-10% 11-20% 21-30% 31-40% 41-50% 51-60% 61-70% 71-80% 81-90% 91-100%

VAS density score

% of PROCAS participants

0-1% 1-<2% 2-<3% 3-<4% 4-<5% 5-<8% ≥8%

10 year breast cancer risk

Offer interventions

Cuzick et al Lancet 2014
Harvie et al BJN 2013
Tyrer-Cuzick risk in 53594 women in NHSBSP
<table>
<thead>
<tr>
<th>SNP</th>
<th>gene</th>
<th>risk</th>
<th>RA</th>
<th>freq weight 0</th>
<th>weight 1</th>
<th>weight 2</th>
<th>0 freq</th>
<th>1 freq</th>
<th>2 freq</th>
<th>RR</th>
<th>W*F</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2981579</td>
<td>FGFR2</td>
<td>T</td>
<td>42</td>
<td>0.72</td>
<td>1.03</td>
<td>1.47</td>
<td>34</td>
<td>49</td>
<td>17</td>
<td>1.43</td>
<td>100</td>
</tr>
<tr>
<td>rs10931936</td>
<td>CASP8</td>
<td>C</td>
<td>74</td>
<td>1.20</td>
<td>1.06</td>
<td>0.93</td>
<td>7</td>
<td>38</td>
<td>55</td>
<td>0.88</td>
<td>100</td>
</tr>
<tr>
<td>rs3803662</td>
<td>TOX3</td>
<td>T</td>
<td>26</td>
<td>0.86</td>
<td>1.12</td>
<td>1.45</td>
<td>55</td>
<td>38</td>
<td>7</td>
<td>1.3</td>
<td>100</td>
</tr>
<tr>
<td>rs889312</td>
<td>MAP3K</td>
<td>C</td>
<td>28</td>
<td>0.89</td>
<td>1.08</td>
<td>1.32</td>
<td>52</td>
<td>40</td>
<td>8</td>
<td>1.22</td>
<td>100</td>
</tr>
<tr>
<td>rs13387042</td>
<td>2q</td>
<td>A</td>
<td>49</td>
<td>0.82</td>
<td>0.99</td>
<td>1.20</td>
<td>26</td>
<td>50</td>
<td>24</td>
<td>1.21</td>
<td>100</td>
</tr>
<tr>
<td>rs1011970</td>
<td>cdkn2a</td>
<td>T</td>
<td>16</td>
<td>0.94</td>
<td>1.12</td>
<td>1.35</td>
<td>70</td>
<td>27</td>
<td>3</td>
<td>1.2</td>
<td>100</td>
</tr>
<tr>
<td>rs704010</td>
<td>10q22</td>
<td>A</td>
<td>39</td>
<td>0.89</td>
<td>1.03</td>
<td>1.18</td>
<td>37</td>
<td>48</td>
<td>15</td>
<td>1.15</td>
<td>100</td>
</tr>
<tr>
<td>rs6504950</td>
<td>cox11</td>
<td>G</td>
<td>73</td>
<td>0.87</td>
<td>0.96</td>
<td>1.05</td>
<td>7</td>
<td>40</td>
<td>53</td>
<td>1.1</td>
<td>100</td>
</tr>
<tr>
<td>rs11249433</td>
<td>notch</td>
<td>C</td>
<td>42</td>
<td>0.94</td>
<td>1.01</td>
<td>1.09</td>
<td>34</td>
<td>48.5</td>
<td>17.5</td>
<td>1.08</td>
<td>100</td>
</tr>
<tr>
<td>rs614367</td>
<td>11q13</td>
<td>T</td>
<td>15</td>
<td>0.92</td>
<td>1.19</td>
<td>1.55</td>
<td>72</td>
<td>26</td>
<td>2</td>
<td>1.3</td>
<td>100</td>
</tr>
<tr>
<td>rs10995190</td>
<td>10q21</td>
<td>G</td>
<td>86</td>
<td>0.61</td>
<td>0.81</td>
<td>1.07</td>
<td>2</td>
<td>24</td>
<td>74</td>
<td>1.32</td>
<td>100</td>
</tr>
<tr>
<td>rs4973768</td>
<td>SLC</td>
<td>T</td>
<td>47</td>
<td>0.87</td>
<td>1.00</td>
<td>1.16</td>
<td>28</td>
<td>50</td>
<td>22</td>
<td>1.16</td>
<td>100</td>
</tr>
<tr>
<td>rs3757318</td>
<td>ESR1</td>
<td>A</td>
<td>7</td>
<td>0.96</td>
<td>1.25</td>
<td>1.62</td>
<td>86.5</td>
<td>13</td>
<td>0.5</td>
<td>1.3</td>
<td>100</td>
</tr>
<tr>
<td>rs1562430</td>
<td>8q24</td>
<td>G</td>
<td>42</td>
<td>1.14</td>
<td>0.97</td>
<td>0.82</td>
<td>33.5</td>
<td>49</td>
<td>17.5</td>
<td>0.85</td>
<td>100</td>
</tr>
<tr>
<td>rs8009944</td>
<td>RAD51L</td>
<td>A</td>
<td>75</td>
<td>1.21</td>
<td>1.06</td>
<td>0.94</td>
<td>6</td>
<td>38</td>
<td>56</td>
<td>0.88</td>
<td>100</td>
</tr>
<tr>
<td>rs909116</td>
<td>LSP1</td>
<td>T</td>
<td>53</td>
<td>0.84</td>
<td>0.98</td>
<td>1.15</td>
<td>22</td>
<td>50</td>
<td>28</td>
<td>1.17</td>
<td>100</td>
</tr>
<tr>
<td>rs9790879</td>
<td>5p12</td>
<td>C</td>
<td>40</td>
<td>0.92</td>
<td>1.02</td>
<td>1.12</td>
<td>36</td>
<td>48</td>
<td>16</td>
<td>1.1</td>
<td>100</td>
</tr>
<tr>
<td>rs1156287</td>
<td>COX11</td>
<td>A</td>
<td>71</td>
<td>0.87</td>
<td>0.96</td>
<td>1.05</td>
<td>8.5</td>
<td>41</td>
<td>50.5</td>
<td>1.1</td>
<td>100</td>
</tr>
<tr>
<td>rs713588</td>
<td>10q</td>
<td>A</td>
<td>60</td>
<td>1.19</td>
<td>1.02</td>
<td>0.88</td>
<td>16</td>
<td>48</td>
<td>36</td>
<td>0.86</td>
<td>100</td>
</tr>
</tbody>
</table>
10 year 18 SNP risks with MD adjusted TC in 9346 women
Correlation SNPs to T-C RR

![Graph showing correlation between SNP and TC risk]
Venn diagram of overlap of highest 10% risk from 1000 women with SNP, Tyrer-Cuzick score and VAS density
Stage of cancer by MD adjusted risk category

Age and BMI adjusted MD

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>Number</th>
<th>% of popul</th>
<th>BCs</th>
<th>% with BC</th>
<th>LN+ve</th>
<th>High Stage 2/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>High >8%</td>
<td>1314</td>
<td>2.6%</td>
<td>52</td>
<td>4.0%</td>
<td>9/38 (24%)</td>
<td>18/47 (38%)</td>
</tr>
<tr>
<td>Mod 5-7.9%</td>
<td>4654</td>
<td>9.1%</td>
<td>160</td>
<td>3.4%</td>
<td>21/121 (17.3%)</td>
<td>42/144 (29%)</td>
</tr>
<tr>
<td>Above ave 3.5-4.9%</td>
<td>8339</td>
<td>16.3%</td>
<td>222</td>
<td>2.7%</td>
<td>39/165 (23.6%)</td>
<td>54/197 (27.5%)</td>
</tr>
<tr>
<td>Average 2-3.5%</td>
<td>22001</td>
<td>42.9%</td>
<td>402</td>
<td>1.8%</td>
<td>64/312 (20.5%)</td>
<td>98/363 (27%)</td>
</tr>
<tr>
<td>Below average 1-2%</td>
<td>14272</td>
<td>27.8%</td>
<td>176</td>
<td>1.2%</td>
<td>22/133 (16.5%)</td>
<td>35/155 (22.5%)</td>
</tr>
<tr>
<td>Low <1%</td>
<td>684</td>
<td>1.3%</td>
<td>3</td>
<td>0.4%</td>
<td>1/3 (33%)</td>
<td>1/3 (33%)</td>
</tr>
<tr>
<td>Above vs below average-</td>
<td>11.7%</td>
<td>3.6%</td>
<td>P<0.0001</td>
<td>19% v 17% p=0.18</td>
<td>31.5%v23% p=0.09</td>
<td></td>
</tr>
</tbody>
</table>

Note: P values indicate statistical significance.
Effects of risk on stage

- 60/191 (31.5%) >mod/high risk stage 2a-3;
- 36/158 (23%) below average stage 2a-3; p=0.09
- 59/5968 = 10 per 1000 stage 2a-3 >average risk
- 36/14956 = 2.4 per 1000 stage 2a-3 average or lower risk p<0.0001 <-<0.6 per 1000 p.a
- 36957/50627 (71%) at average or below
Calibration T-C and Gail model

Brentnall et al Breast Cancer Res 2016
Breast density and residual by time of diagnosis since enrolment.
T-C Density and SNPs in PROCAS
9346 women 439 cancers

Bar chart showing proportions of women in different T-C density groups with breast cancer (BC). The groups are:
- Low <1%
- 1-2%
- Average 2-3.5%
- 3.5-5%
- Moderate 5-8%
- High 8%+

The chart indicates the percentage of women within each group.
T-C + Density + SNPs in PROCAS Risks 9346 women
Calibration of SNP18
Distribution of 10 year breast cancer and 439 incident breast cancers in PROCAS

N = 9346

- % of women
- % 10 year risk

- TC alone
- %BC
- TCMDSNP
- %BC2

35% of pop get 51% of cancers
But 60% of high stage cancers
Effects of risk on stage

- 33/116 (28.5%) >mod/high risk stage 2a-3;
- 36/158 (23%) below average stage 2a-3; p=0.09
- 33/1668 = 20 per 1000 stage 2a-3 >average risk
- 13/2796 = 4.6 per 1000 stage 2a-3 average or lower risk p<0.0001 -1 per 1000 p.a c.f 4 per 1000
Cancers found on interval screen in high risk

<table>
<thead>
<tr>
<th>Age</th>
<th>Histology</th>
<th>Invasive/CIS</th>
<th>CIS</th>
<th>Size</th>
<th>Stage</th>
<th>Grade</th>
<th>LN</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>IDC</td>
<td>invasive</td>
<td>no</td>
<td>15mm</td>
<td>1</td>
<td>II</td>
<td>0/9</td>
</tr>
<tr>
<td>63</td>
<td>IDC</td>
<td>invasive</td>
<td>no</td>
<td>28mm</td>
<td>2a</td>
<td>III</td>
<td>1/2</td>
</tr>
<tr>
<td>55</td>
<td>IDC</td>
<td>invasive</td>
<td>no</td>
<td>11mm</td>
<td>1</td>
<td>III</td>
<td>0</td>
</tr>
<tr>
<td>56</td>
<td>ILC</td>
<td>invasive</td>
<td>no</td>
<td>25mm</td>
<td>2a</td>
<td>II</td>
<td>0/1</td>
</tr>
<tr>
<td>54</td>
<td>IDC</td>
<td>invasive</td>
<td>yes</td>
<td>7mm</td>
<td>1</td>
<td>I</td>
<td>0/2</td>
</tr>
</tbody>
</table>
PROCAS Risk Assessment

- First 50,000 women recruited
- 94.7% wished to know risk
- 0.5% indicated no preference
- 4.8% did NOT want to know
Intervention in those at high risk

- Women with a lifetime risk of 30%+ or
- 8% risk in 10 years
- are classified high risk by NICE
- All high risk women will be invited for a clinic visit
 a. If found after initial T-C assessment without MD/DNA
 b. If found after adding extra factors
- An equal number of low risk women will be invited
- Women can opt out of knowing risk on 2 occasions
 1. At consent
 2. When they receive a clinic appt
Risk appointments

High risk (8%+ 10 yr risk or 5%+ and >60% MD)

- Participants who are high risk: 815
- Participants who want to know their risk: 784
- Participants who have been invited for an appointment: 784
- Participants who have attended their risk appointment: 582 - 74%
- Participants who DNA’d their appointment: 10
- Participants who did not respond after two reminders: 132
- Participants who declined an appointment: 60

- 12/60 (20%) women entered IBIS2 and
- 5/25 (20%) in dietary studies
- 327/345 (95%) attended next mammogram p<0.001 compared to usual re-attendance of 84%
Risk appointments update

Low risk (<1.5% 10 year risk <10% MD)
- Participants who are low risk: 171
- Participants who want to know their risk: 150
- Participants who have been invited for an appointment: 192
- Participants who have attended their risk appointment: 105
- Participants who DNA’d their appointment: 6
- Participants who did not respond after two reminders: 56
- Participants who declined an appointment: 25

Reattendance at next invited NHSBSP visit -84% (64/76)

Evans et al Brit J Cancer 2016
Conclusions

- Breast cancer risk assessment is feasible in NHSBSP
- As many as 12-17% of the female population are at least moderate risk and entitled to consideration for:
 - Chemoprevention with tamoxifen
 - Annual mammography – 2.5%
- The great majority of women at moderate risk are unaware and/or that they are eligible for extra interventions
- 3 yearly mammography appears adequate 71% women at <3.5% MD adjusted 10-years risks
Conclusions

- SNPs are able to significantly add to breast cancer risk discrimination
- Can be used in a population and family history setting
- To risk stratify for screening and chemoprevention
Contacts

- Chief Investigator: Prof. Gareth Evans
- Project Co-ordinator: Paula Stavrinos
- Data Manager: Sarah Sampson

Email: PROCAS.Study@uhsm.nhs.uk
The PROCAS team

Eileen and Chris who will be on the vans, and Stella and Julie who have been assisting us in the office.

Thank you

everyone counts staff awards

CONTACT US: Phone: 0161 291 4408
Email: PROCAS.study@uhsm.nhs.uk
Acknowledgements

Nightingale Centre UHSM
- Prof Anthony Howell
- Dr Andrew Maurice
- Jenny Affen
- Rosemary Greenhalgh
- Dr Michelle Harvie
- Barbara Eckersley
- Miriam Griffiths
- Sue Berry

NIHR Group
- Paula Stavrinos
- Sarah Sahin
- Sarah Ingham
- Sarah Dawe
- Jill Fox
- Louise Donnelly
- Elaine Harkness

University of Manchester
- Prof Iain Buchan
- Dr Sue Astley
- Dr Katherine Payne

Radiology UHSM
- Dr Mary Wilson
- Prof Caroline Boggis
- Dr Emma Hurley
- Prof Anil Jain
- Dr Ursula Beetles
- Dr YY Lim
- Dr N Barr

Surgery UHSM/Christie
- Mr Lester Barr
- Dr Jenny Diffey

Genetic Service CMFT
- Prof Gareth Evans
- Dr Bill Newman
- Dr Fiona Laloo
- Helen Byers
- Dr Bronwyn Kerr
- Tara Clancy

Cancer register NWCIS
- Dr Tony Moran

Others
- Prof Jack Cuzick
- Dr Adam Brentnall
- Dr Ruth Warren
- Prof Jane Wardle
- Helen Middleton-Price
- Wendy Watson

Central Manchester University Hospitals NHS Foundation Trust

creating a future without breast cancer

NHS National Institute for Health Research