

**NHS** National Institute for Health Research

Central Manchester University Hospitals NHS

**NHS Foundation Trust** 

## Risk estimation and stratified screening: Is this the way forward? Predicting Risk Of Cancer At Screening D Gareth Evans







# Potential risk factors\* & factors to be investigated\* for inclusion in a model



# Breast cancer risk in general population



## Family History & Genetics

 Number of affected family members, and age of developing breast cancer.

BRCA1 & BRCA2 gene mutations

 Genetic variants – currently >100 known genetic variants that can increase the risk of breast cancer by between 5-30%



#### Proportion of familial breast cancer 2016



## **Breast Density**

 Increased breast density increases risk of breast cancer.

 After family history and age this is the largest risk factor.

 Breast density is assessed from mammograms.

 There are a number of different methods for assessing breast density, but these methods need validating.



#### **Mammographic Density**

# **Dense breast**

#### Lifetime risk 4%

#### Non dense breast



#### Lifetime risk 25%

## Aims of the PROCAS study

 To determine whether it is feasible to incorporate personal breast cancer risk prediction into NHS BSP

 Alter mammographic screening interval based on each woman's personal risk of cancer

 Introduce preventive measures for women who are high risk



# **PROCAS Summary**

 60,000 women, who attend NHS BSP in Greater Manchester will take part.

- Information on lifestyle and family history will be collected from a study questionnaire.
- Breast density assessments will be carried out.
- 10,000 of the 60,000 women will have genetic testing.
- This information will be incorporated to predict each woman's individual breast cancer risk





# **Breast Density**

 Breast density results will be obtained from 2 mammograms (Y1 and Y3) for each woman.

 We will use a number of breast density assessment methods and determine which is best for use within NHS BSP.



**PROCAS Study Questionnaire** Collects information on: Family history Age at menarche Parity Age at first full term pregnancy Age menopause HRT use BMI Alcohol intake Exercise

## **DNA testing**



 Carried out at Withington Community Hospital

 Participants provided with a saliva sample collection kit



 Collect sample (approx 5 min) seal and post to laboratory

Laboratory extract DNA

 St Mary's Hospital, Manchester carry out analysis to look for genetic variants

# DNA testing

- 10,000 participants will be invited to have DNA testing
- Laboratory extract DNA
- St Mary's Hospital, Manchester
  carry out analysis to look for
  genetic variants
  10,000 recruited







f Manuel Inversity

# Recruitment

Number recruited 01/03/2015 - 57,432

- Uptake year 1: 35%
- Uptake year 2: 43%
- Uptake year 3: 37%
- Uptake year 4 47%
- Year 2 uptake amongst first attendees aged
  47-52- 52%
- Uptake when study staff present 60%

#### <u>PR</u>ediction <u>Of</u> <u>Cancer At</u> <u>Screening</u> (PROCAS)

NHS National Institute for Health Research









Distribution of VAS density scores



Offer interventions

Cuzick et al Lancet 201 Harvie et al BJN 2013

# Tyrer-Cuzick risk in 53594 women in MHSBSP



|            |        | risk |    | weight |          | weight |        |        |        |      |     |
|------------|--------|------|----|--------|----------|--------|--------|--------|--------|------|-----|
| SNP        | gene   | е    | F  | 0      | weight 1 | 2      | 0 freq | 1 freq | 2 freq | RR   | W*F |
| rs2981579  | FGFR2  | Т    | 42 | 0.72   | 1.03     | 1.47   | 34     | 49     | 17     | 1.43 | 100 |
| rs10931936 | CASP8  | С    | 74 | 1.20   | 1.06     | 0.93   | 7      | 38     | 55     | 0.88 | 100 |
| rs3803662  | ТОХ3   | т    | 26 | 0.86   | 1.12     | 1.45   | 55     | 38     | 7      | 1.3  | 100 |
| rs889312   | MAP3K  | С    | 28 | 0.89   | 1.08     | 1.32   | 52     | 40     | 8      | 1.22 | 100 |
| rs13387042 | 2q     | Α    | 49 | 0.82   | 0.99     | 1.20   | 26     | 50     | 24     | 1.21 | 100 |
| rs1011970  | cdkn2a | т    | 16 | 0.94   | 1.12     | 1.35   | 70     | 27     | 3      | 1.2  | 100 |
| rs704010   | 10q22  | Α    | 39 | 0.89   | 1.03     | 1.18   | 37     | 48     | 15     | 1.15 | 100 |
| rs6504950  | cox11  | G    | 73 | 0.87   | 0.96     | 1.05   | 7      | 40     | 53     | 1.1  | 100 |
| rs11249433 | notch  | С    | 42 | 0.94   | 1.01     | 1.09   | 34     | 48.5   | 17.5   | 1.08 | 100 |
| rs614367   | 11q13  | т    | 15 | 0.92   | 1.19     | 1.55   | 72     | 26     | 2      | 1.3  | 100 |
| rs10995190 | 10q21  | G    | 86 | 0.61   | 0.81     | 1.07   | 2      | 24     | 74     | 1.32 | 100 |
|            | 3p24   | T    |    |        |          |        |        |        |        |      |     |
| rs4973768  | SLC    |      | 47 | 0.87   | 1.00     | 1.16   | 28     | 50     | 22     | 1.16 | 100 |
| rs3757318  | ESR1   | Α    | 7  | 0.96   | 1.25     | 1.62   | 86.5   | 13     | 0.5    | 1.3  | 100 |
| rs1562430  | 8q24   | G    | 42 | 1.14   | 0.97     | 0.82   | 33.5   | 49     | 17.5   | 0.85 | 100 |
| rs8009944  | RAD51L |      |    |        |          |        |        |        |        |      |     |
|            | 1      | Α    | 75 | 1.21   | 1.06     | 0.94   | 6      | 38     | 56     | 0.88 | 100 |
| rs909116   | LSP1   | т    | 53 | 0.84   | 0.98     | 1.15   | 22     | 50     | 28     | 1.17 | 100 |
| rs9790879  | 5p12   | С    | 40 | 0.92   | 1.02     | 1.12   | 36     | 48     | 16     | 1.1  | 100 |
| rs1156287  | COX11  | Α    | 71 | 0.87   | 0.96     | 1.05   | 8.5    | 41     | 50.5   | 1.1  | 100 |
| rs713588   | 10g    | Α    | 60 | 1.19   | 1.02     | 0.88   | 16     | 48     | 36     | 0.86 | 100 |

# 10 year 18 SNP risks with MD adjusted TC in 9346 women



#### **Correlation SNPs to T-C RR**



# Venn diagram of overlap of highest 10% risk from 1000 women with SNP, Tyrer-Cuzick score and VAS density



#### Stage of cancer by MD adjusted risk category Age and BMI adjusted MD -1015 Breast cancers

|                | Numb  | % of  | BCs  | % with BC | LN+ve      | High Stage  |  |
|----------------|-------|-------|------|-----------|------------|-------------|--|
|                | er    | popul |      |           |            | 2/3         |  |
| High >8%       | 1314  | 2.6%  | 52   |           | 9/38       | 18/47 (38%) |  |
|                |       |       |      | 4.0%      | (24%)      |             |  |
| Mod 5-7.9%     | 4654  | 9.1%  | 160  |           | 21/121     | 42/144      |  |
|                |       |       |      | 3.4%      | (17.3%)    | (29%)       |  |
| Above ave 3.5- | 8339  | 16.3% | 222  |           | 39/165     | 54/197      |  |
| 4.9%           |       |       |      | 2.7%      | (23.6%)    | (27.5%)     |  |
| Average 2-     | 22001 | 42.9% | 402  |           | 64/312     | 98/363      |  |
| 3.5%           |       |       |      | 1.8%      | (20.5%)    | (27%)       |  |
| Below average  | 14272 | 27.8% | 176  |           | 22/133     | 35/155      |  |
| 1-2%           |       |       |      | 1.2%      | (16.5%)    | (22.5%)     |  |
| Low <1%        | 684   | 1.3%  | 3    |           | 1/3 (33%)  | 1/3 (33%)   |  |
|                |       |       |      | 0.4%      |            |             |  |
| Above vs below |       | 11.7% | 3.6% | P<0.0001  | 19% v      | 31.5%v23%   |  |
| average-       |       | 29%   | 1.2% |           | 17% p=0.18 | p=0.09      |  |

Effects of risk on stage • 60/191 (31.5%) >mod/high risk stage 2a-3; ♦ 36/158(23%) below average stage 2a-3; p=0.09 ◆ 59/5968 = 10 per 1000 stage 2a-3 >average risk ♦ 36/14956 = 2.4 per 1000 stage 2a-3 average or lower risk p<0.0001 -<0.6 per 1000 p.a ♦ 36957/50627 (71%) at average or below

#### Calibration T-C and Gail model



Observed odds ratio



#### T-C Density and SNPs in PROCAS 9346 women 439 cancers



#### T-C + Density + SNPs in PROCAS Risks 9346 women



### Calibration of SNP18



Expected odds ratio (SNP18)

# Distribution of 10 year breast cancer and 439 incident breast cancers in PROCAS



% 10 year risk

Effects of risk on stage ♦ 33/116 (28.5%) >mod/high risk stage 2a-3; ♦ 36/158(23%) below average stage 2a-3; p=0.09 ♦ 33/1668 = 20 per 1000 stage 2a-3 >average risk 13/2796 = 4.6 per 1000 stage 2a-3 average or lower risk p<0.0001 -1 per 1000 p.a c.f 4 per 1000

## Cancers found on interval screen in high risk

| Age | Histology | Invasive/CIS | CIS | Size | Stage | Grade | LN  |
|-----|-----------|--------------|-----|------|-------|-------|-----|
| 51  | IDC       | invasive     | no  | 15mm | 1     | II    | 0/9 |
| 63  | IDC       | invasive     | no  | 28mm | 2a    | III   | 1/2 |
| 55  | IDC       | invasive     | no  | 11mm | 1     | Ш     | 0   |
| 56  | ILC       | invasive     | no  | 25mm | 2a    | II    | 0/1 |
| 54  | IDC       | invasive     | yes | 7mm  | 1     | I     | 0/2 |

#### **PROCAS Risk Assessment**

First 50,000 women recruited
94.7% wished to know risk
0.5% indicated no preference
4.8% did NOT want to know

# Intervention in those at high risk

- Women with a lifetime risk of 30%+ or
- 8% risk in 10 years
- are classified high risk by NICE
- All high risk women will be invited for a clinic visit
- a. If found after initial T-C assessment without MD/DNA
- b. If found after adding extra factors
- An equal number of low risk women will be invited
- Women can opt out of knowing risk on 2 occasions
- 1. At consent
- 2. When they receive a clinic appt

# <u>Risk appointments</u>

- High risk (8%+ 10 yr risk or 5%+ and >60% MD)
- Participants who are high risk: 815
- Participants who want to know their risk: 784
- Participants who have been invited for an appointment: 784
- Participants who have attended their risk appointment: 582 -74%
- Participants who DNA'd their appointment: 10
- Participants who did not respond after two reminders: 132
- Participants who declined an appointment: 60
- 12/60 (20%) women entered IBIS2 and
- 5/25 (20%) in dietary studies
- 327/345 (95%) attended next mammogram p<0.001 compared to usual re-attendance of 84%

# Risk appointments update

#### Low risk (<1.5% 10 year risk <10% MD)

- Participants who are low risk: 171
- Participants who want to know their risk: 150
- Participants who have been invited for an appointment: 192
- Participants who have attended their risk appointment: 105
- Participants who DNA'd their appointment: 6
- Participants who did not respond after two reminders: 56
- Participants who declined an appointment: 25

**Reattendance at next invited NHSBSP visit -84% (64/76)** 

#### Evans et al Brit J Cancer 2016



MANCHES

#### Conclusions

# Breast cancer risk assessment is feasible in NHSBSP

- As many as 12-17% of the female population are at least moderate risk and entitled to consideration for:
- Chemoprevention with tamoxifen
- Annual mammography 2.5%
- The great majority of women at moderate risk are unaware and/or that they are eligible for extra interventions

 3 yearly mammography appears adequate 71% women at <3.5% MD adjusted 10-years risks</li>



#### Conclusions

The University of Mancheste SNPs are able to significantly add to breast cancer risk discrimination

- Can be used in a population and family history setting
- To risk stratify for screening and chemoprevention



Chief Investigator: Prof. Gareth Evans
Project Co-ordinator: Paula Stavrinos
Data Manager: Sarah Sampson

Email: <u>PROCAS.Study@uhsm.nhs.uk</u>

## The PROCAS team



Eileen and Chris who will be on the vans, and Stella and Julie who have been assisting us in the office



University Hospital MHS of South Manchester

CONTACT US: Phone: 0161 291 4408 Email: PROCAS.study@uhsm.nhs.uk





#### Acknowledgements

#### Nightingale Centre UHSM

- Prof Anthony Howell
- Dr Andrew Maurice
- Jenny Affen
- Rosemary Greenhalgh
- Dr Michelle Harvie
- Barbara Eckersley
- Miriam Griffiths
- Sue Berry

#### **NIHR Group**

- Paula Stavrinos
- Sarah Sahin
- Sarah Ingham
- Sarah Dawe
- Jill Fox
- Louise Donnelly
- Elaine Harkness

#### University of Manchester

- Prof lain Buchan
- Dr Sue Astley
- Dr Katherine F



#### Radiology UHSM

- Dr Mary Wilson
- Prof Caroline Boggis
- Dr Emma Hurley
- Prof Anil Jain
- Dr Ursula Beetles
- Dr YY Lim
- Dr N Barr

#### Genetic Service CMFT

- Prof Gareth Evans
- Dr Bill Newman
- Dr Fiona Lalloo
- ♦ Helen Byers
- Dr Bronwyn Kerr
- Tara Clancy

#### **Christie Hospital**

- Dr Alan Hufton
- Dr Jenny Diffey

#### **Surgery UHSM/Christie**

- Mr Lester Barr
- Sur Mr Andrew Baildam
- Mrs Ann Brain
- Mr Gary Rossildam
- Ms-Victoria Rose
- Mr Stuart Wilson
- Prof N Bundred

#### Cancer register NWCISDr Tony Moran

#### Others

- Prof Jack Cuzick
- Dr Adam Brentnall
- Dr Ruth Warren
- Prof Jane Wardle
- Helen Middleton-Price
- Wendy Watson

Central Manchester University Hospitals

National Institute for Health Research

NHS